COOL WALLS U.S. NATURAL EXPOSURE PROGRAM: PRELIMINARY ANALYSIS OF 3-YEAR RESULTS

Sharon Chen, Haley Gilbert, Mina Truong, Sébastien Houzé de l’Aulnoit, Ronnen Levinson and Hugo Destaillats

Heat Island Group
Lawrence Berkeley National Laboratory

Wall Rating Steering Committee Meeting
Sacramento, CA • 25 February 2020
Scope and goals of the Cool Walls California & U.S. exposure programs

• Evaluate radiative performance of wall products
• Cover main types of wall materials and coatings typically used in residential and commercial construction
• Include low-, medium-, and high-albedo products
• Include both conventional and advanced/innovative materials (e.g., containing cool pigments, dirt-resistant formulations or self-cleaning functionalities)
• Include both commercial and experimental products
• Cover main California climate zones – later extended to three U.S. CRRC exposure sites in Arizona, Florida and Ohio
• Exposure duration: 2 years in California program; 5 years in national program
The 55 materials exposed in the US program encompass a wide variety of types, substrates, and technologies.

Field-applied paints
- Substrates:
 - Wood
 - Fiber cement
 - Concrete
- Conventional paints
- Dirt-resistant paints
- Cool colors
- Commercial products
- Experimental products
- Initial SR: 0.06 to 0.88

Architectural fabrics
- Self-cleaning
- Photocatalytic
- Commercial products
- Initial SR: 0.74

Factory-coated metals
- Substrates:
 - Steel
- Fluoropolymer coatings
- Cool colors
- Commercial products
- Initial SR: 0.28 to 0.73

Sandwich panels
- Fluoropolymer coatings
- Commercial products
- Initial SR: 0.51 to 0.71

Retroreflective & reflective films
- Traffic safety films
- Mirror-like films
- [not yet characterized]
Wall materials in the U.S. program were naturally weathered in Arizona, Florida, and Ohio (3rd of 5 years)

New River, Arizona
- Desert environment/climate
- Hot summers, mild/cool winters
- Dry, low humidity
- High levels of solar radiation
- Low levels of urban pollution

Miami, Florida
- Subtropical environment/climate
- Hot summers, mild/warm winters
- Wet, high humidity
- High levels of solar radiation

Medina, Ohio
- Northern temperate environment/climate
- Warm summers, cold winters
- Humid, no defined dry season
- Lower levels of solar radiation (relatively)
- Some urban pollution
Exposure began in Aug 2016, and we recently completed the third-year collection.

<table>
<thead>
<tr>
<th>Site</th>
<th>1 yr</th>
<th>2 yr</th>
<th>3 yr</th>
<th>4 yr</th>
<th>5 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>New River, AZ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Aug ’20</td>
<td>Aug ’21</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Aug ’20</td>
<td>Aug ’21</td>
</tr>
<tr>
<td>Medina, OH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Aug ’20</td>
<td>Aug ’21</td>
</tr>
</tbody>
</table>

Rack rows are staggered to prevent washdown contamination from rain/moisture.

This 5-year study w/ annual collections focuses on long-term changes in wall albedo.
At the 3-year mark, a majority of the materials have exhibited little albedo change.

- Average albedo loss across all 3 sites: 2 points ($\Delta SR = 0.02$)
- At year 3, we continue to see the same trends as identified in year 2:
 - Most materials tested exhibited trivial albedo change
 - The more significant instances of albedo loss were observed in white field-applied paints (FL, OH; soiling) and vinyl siding (AZ; yellowing)

Note: The data shown here have not yet been quality-checked.
At the 3-year mark, the average albedo loss of materials tested in AZ is 0.01.

At the 3-year mark in Arizona, 50 of 51 materials exhibited albedo losses of less than 5 points (ΔSR < 0.05).

Note: The data shown here have not yet been quality-checked.
At the 3-year mark, the average albedo loss of materials tested in FL is 0.02

At the 3-year mark in Florida, 47 of 51 materials exhibited albedo losses of less than 5 points ($\Delta SR < 0.05$)

Note: The data shown here have not yet been quality-checked.
At the 3-year mark, the average albedo loss of materials tested in OH is 0.02.

At the 3-year mark in Ohio:

- 44 of 51 materials exhibited albedo losses of less than 5 points ($\Delta SR < 0.05$)
- All 51 materials exhibited albedo losses of less than 8 points ($\Delta SR < 0.08$)

Soiling accumulation (OH) on a white semi-gloss exterior paint (left), and a white matte exterior paint (right)

Note: The data shown here have not yet been quality-checked.
Next steps

• **CA program:** Continue with additional in-depth analyses of the current dataset.

• **U.S. program:** Continue retrieving specimens and analyzing results over next 2 years.

• Meet separately with each partner to report in full detail results obtained with their products in both the CA and U.S. exposure programs.

• **Report** to CEC aggregated results that preserve confidentiality of each product/manufacturer, unless explicitly waived.

• **Ultimate goal:** contribute to development of infrastructure that facilitates adoption of cool walls in U.S. construction.