Ultra-White Paints for Sub-Ambient Radiative Cooling: Materials, Physics, and Climate Crisis Mitigation

Xiangyu Li¹ and Xiulin Ruan²

¹Department of Mechanical Aerospace & Biomedical Engineering, University of Tennessee Knoxville ²School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University

> CRRC Annual Meeting June 14, 2023

Introduction – Xiangyu Li, PhD

- Ph.D., Purdue University
 - Advisor: Xiulin Ruan
 - Nanoscale heat transfer, composite materials
- Postdoctoral Associate, MIT
 - Advisor: Evelyn N. Wang
 - Thermal energy storage, adsorption systems
- Assistant Professor, MABE, UTK
 - Water Innovation, Sustainable Energy (WISE)
 - xli148@utk.edu

Massachusetts Institute of Technology

----- Physics

Outline

Motivation and Background

----- Materials

----- Energy Savings and Climate Crisis Mitigation

----- Outlook

US Commitment: Net-Zero Carbon Emission in 2050

Source: https://www.whitehouse.gov/

4

Space Cooling

- Space cooling consumes 113 million tons of CO₂ emission
- Building envelope constitutes 70% of the total heat gain

Radiative Cooling

- Passive radiative cooling
 - Radiation to deep sky (~ 3 K)
 - No energy consumption

Yin, X., et al. (2020). Science, 370(6518), 786-791.

Radiative Cooling

Pursuits of Radiative Cooling Paints

- Insufficient solar reflectance (80-90%)
- Weak daytime performance

Orel, B., et al (1993). Solar Energy, 50(6), 477-482.

8

Daytime Radiative Cooling

Raman, et al. (2014) Nature

Kou, et al., (2017) ACS Photonics Zh

Zhai, et al., (2017) Science

Highly porous polymers

Mandal, et al. (2018) Science

Delignified wood

Polyethylene aerogel

Limitations:

- High cost
- Metallic components
- High thickness

Li, et al., (2019) Science

Outline

----- Motivation and Background

----- Materials

----- Energy Savings and Climate Crisis Mitigation

----- Outlook

----- Physics

Renaissance of the Paint Approach

Reflect solar energy Radiate heat Particle embedded double-layer coating

- Lorentz Mie theory analyzes a photon's interaction with a single particle
- Monte Carlo on effective medium is low computational cost

Huang and Ruan, (2017). Int. J. Heat Mass Transf, 104, 890–896.

11

Prof. Hua Bao SJTU

Bao, Yan, Wang, Fang, Zhao, and Ruan, Sol. Eng. Mat. Sol. Cell 168, 78-84 (2017).

Highly Cited Paper

Renaissance of Cooling Paint

Passive Radiative Cooling Paints

High electron band gap to reduce absorption of the UV band

Material	Band Gap (eV)	Wavelength (nm)	Refractive Index @ 633 nm
TiO ₂	3.1	407	2.87
ZnS	3.5	350	2.36
AI_2O_3	4.6	267	1.77
CaCO ₃	5.1	245	1.66

13

Passive Radiative Cooling Paints

Peoples, J., Li, X., et al., (2019) IJHMT, 131, 487-494

Coating

thickness

- Matrix Material
- Particle Material
- Particle Size
- Volume Concentration

Monte Carlo Simulations Reflectance Absorptance

Transmittance

- Absorptance
- Reflectance
- Transmittance

Passive Radiative Cooling Paints

Benefits of Concentration and Particle Size

- High volume concentration
- Single particle size optimization

Benefits of Concentration and Particle Size

What about adding multiple particle sizes?

Benefits of Multiple Particle Sizes

- High volume concentration
- Single particle size optimization
- Non-uniform size distribution

CaCO₃-Acrylic Paint

CaCO₃ 1.7 \pm 0.4 µm (length) 518 \pm 96 nm (diameter)

Li, X., Peoples, J., Huang, Z., Zhao, Z., Qiu, J., & Ruan, X. (2020). *Cell Reports Physical Science*, 1(10), 100221. International Patent Application No. PCT/US2019/054566, Priority Date: 62/740,552 03.10.2018 19

CaCO₃-Acrylic Paint

CaCO₃ 1.7 \pm 0.4 μ m (length) 518 + 96 nm (diameter)

Li, X., Peoples, J., Huang, Z., Zhao, Z., Qiu, J., & Ruan, X. (2020). Cell Reports Physical Science, 1(10), 100221. International Patent Application No. PCT/US2019/054566, Priority Date: 62/740,552 03.10.2018 20

Characterization and Results

- Full daytime below ambient cooling
- 27 70 W/m² cooling

BaSO₄-Acrylic Paint

60 v%, 400 µm thickness

Characterization and Results

Thinner, and Lighter Paints for Daytime Radiative Cooling

Current best radiative cooling paints need 400 μ m to several millimeters of coating thickness to reach at most 98.1% solar reflectance

Ultrawhite, thin, and lightweight cooling paints needed for weight sensitive applications i.e. Reducing 1 kg per airplane can save 74 kg fuel for the airplane per year

Wearable Technologies

Vehicles

Aircraft

Felicelli, A., Katsamba, I., Barrios, F., Zhang, Y., Guo, Z., Peoples, J., Chiu, G., & Ruan, X., Thin layer lightweight and ultrawhite hexagonal boron nitride nanoporous paints for daytime radiative cooling. *Cell Reports Phys. Sci.* **3**, 101058 (2022).

Radiative Cooling Performance of hBN-Acrylic Paints

Felicelli, A., Katsamba, I., *et al., Cell Reports Phys. Sci.* **3**, 101058 (2022).

 \rightarrow 5-6°C below ambient temperature ²⁷

Outline

----- Motivation and Background

----- Materials

---- Physics

Energy Savings and Climate Crisis Mitigation

----- Outlook

First Principles Prediction of Optical Constants

• Using the atomic structure, we can predict the optical constants via first principles.

UV-VIS-NIR: Electronic Structure

Dr. Zhen Tong Dr. Joseph Peoples

Intel

 SiO₂ and BaSO₄ both have a large bandgap, indicating that they do not absorb in the UV-VIS-NIR band. The band gap of BaSO₄ is smaller.

Tong, Peoples, Li, Yang, Bao, and Ruan, Materials Today Physics 24, 100658 (2022).

IR: Lorentz Oscillator Model

- The **resonant frequency**, **oscillator strength** and **damping factor** were usually obtained by fitting to experiments.
- Can we predict them?

Phononic Structure

- BaSO4
 - More IR-active phonon modes at the Γ point, leading to higher absorptivity/emissivity in the sky window.

Experimental data from: Strauch, et. al., Journal of Physics: Condensed Matter 5, 6149 (1993), ISSN 0953-8984

Tong, Peoples, Li, Yang, Bao, and Ruan, Materials Today Physics 24, 100658 (2022).

Spectrally Resolved Optical Constants

- Our predictions of *n* and *k* for SiO₂ at room temperature agree well with experimental data.
- We predicted *n* and *k* for BaSO₄ for the first time. Needs to be validated by experiments in the future.

Tong, Peoples, Li, Yang, Bao, and Ruan, Materials Today Physics 24, 100658 (2022).

Outline

----- Motivation and Background

----- Materials

----- Outlook

----- Physics

Concentrated Radiative Cooling

Motivation and Concept

Source: https://tinyurl.com/y69f5l9k

Intel

- Using a mid-IR reflector, the pipes bottom surface can radiate to the sky
- ~2X concentration with respect to the material facing the sky

Peoples, Hung, Li, Gallagher, Fruehe, Pottschmidt, Breseman, Adams, Yuksel, Braun, Horton, and Ruan, "Concentrated Radiative Cooling," Applied Energy 310, 118368 (2022).

Field Testing

Energy Saving Benefits

- Collaboration with Professor Braun (ME), Professor Horton (CE), and Yu-Wei Hung (CE)
- DOE Small Commercial Building (600m²)
- Indoor Setpoint: 25 °C
- Radiative Cooling (RC) and Concentrated Radiative Cooling (CRC) pre-conditioner modeled

COND

- Assumptions:
 - Ideal weather condition
 - Neglect wind speed
 - Ideal heat exchanger

Peoples, Hung, **Li**, Gallagher, Fruehe, Pottschmidt, Breseman, Adams, Yuksel, Braun, Horton, and Ruan, "Concentrated Radiative Cooling," Applied Energy 310, 118368 (2022).

Promise for Mitigating Climate Crisis

Munday, Joule 3, 2057-2060 (2019).

- According to Munday's model, painting ~1% of the earth's surface with our cooling paint can stop the warming trend.
- Effectively, carbon-negative!
- No refrigerant or water needed
- As easy to apply as commercial paints
- Both CaCO₃ and BaSO₄ are cheaper than commercial TiO₂ pigment.

https://www.wonderworksonline.com/sciencelibrary/atmosphere-climate/global-warming/

https://thedesigninspiration.com/blog/2009/06/21/cold-earth/

Outline

----- Motivation and Background

----- Materials

----- Physics

----- Energy Savings and Climate Crisis Mitigation

Future Opportunities in Cooling Paints

- Durability
- Colored paints
- Dynamic cooling and heating
- Multifunction
- Energy savings/benefits
- Climate crisis mitigation

- Materials development
- Machine learning
- Bio-inspired designs
- Advanced manufacturing

Munday, Joule 3, 2057-2060 (2019).

Acknowledgements

- Group alumni (a partial list):
 - Prof. Hua Bao (Shanghai Jiao Tong University)
 - Dr. Bo Qiu (Facebook)
 - Prof. Yalin Dong (University of Akron)
 - Dr. Liangliang Chen (Western Digital)
 - Dr. Ajit Vallabhaneni (Qualcomm)
 - Prof. Xiawa Wu (Penn State U at Behrend)
 - Prof. Yan Wang (University of Nevada at Reno)
 - Prof. Kelly Rickey (Colorado School of Mines)
 - Dr. Zuyuan Wang (to join faculty in summer 2022)
 - Prof. Tianli Feng (University of Utah)
 - Dr. Jingjing Shi (University of Florida)
 - Dr. Zexi Lu (postdoc at PNNL)
 - Dr. Xiangyu Li (University of Tennessee Knoxville)
 - Dr. Prabudhya Chowdhury (IBM)
 - Dr. Joseph Peoples (Intel)
 - Prof. Run Hu (Huazhong University of Science and Technology)
 - Prof. Zhifeng Huang (Wuhan University)
 - Prof. Jun Qiu (Harbin Institute of Technology)
 - Dr. Zhen Tong (to join faculty in summer 2022)
 - Prof. Tingting Du (Shandong University)

- Collaborators:
 - Xianfan Xu (Purdue)
 - Li Shi (Univ Texas Austin)
 - Amy Marconnet (Purdue)
 - Haiyan Wang (Purdue)
 - Peter Bermel (Purdue)
 - George Chiu (Purdue)
 - Wu Li (Shenzhen U)
 - Mark Lundstrom (Purdue)
 - Yue Wu (Iowa State Univ)
 - Yong Chen (Purdue)
 - Timothy Fisher (UCLA)
 - Bingyang Cao (Tsinghua)
 - Jayathi Murthy (UCLA)
 - Oleg Prezhdo (Rochester)
 - Ajit Roy (AFRL)
 - Lucas Lindsay (Oak Ridge National Lab)
 - Yongjie Hu (UCLA)
 - Koji Takahashi and Qinyi Li (Kyushu University)

Sponsors:

COOLING **ECHNOLOGIES** RESEARCH CENTER

- Current group members:
 - Abdulrahman Aljwirah
 - **Emilv Barber**
 - **Daniel Carne**
 - Andrea Felicelli
 - Dr. Dudong Feng
 - Ziqi Guo
 - Orlando Gonzalez
 - Zherui Han
 - Ioanna Katsamba
 - Krutarth Khot
 - Zixin Xiona
 - Dr. Yun Zhang

Nanoscale Energy Transport & Conversion Laboratory

Thanks for your attentions.

Any discussions and collaborations are welcome.

xli148@utk.edu

Massachusetts Institute of Technology

